工程力学 ›› 2019, Vol. 36 ›› Issue (3): 231-239.doi: 10.6052/j.issn.1000-4750.2017.07.0988

• 机械工程学科 • 上一篇    下一篇

基于边界效应理论确定热轧碳素钢的韧度与强度

管俊峰1, 谢超鹏1, HU Xiaozhi2, 姚贤华1, 白卫峰1   

  1. 1. 华北水利水电大学土木与交通学院, 河南, 郑州 450045;
    2. School of Mechanical and Chemical Engineering, University of Western Australia, Perth, WA 6009, Australia
  • 收稿日期:2017-12-27 修回日期:2018-08-07 出版日期:2019-03-29 发布日期:2019-03-16
  • 通讯作者: HU Xiaozhi(1957-),男,澳大利亚珀斯人,西澳大学终身教授,博导,从事材料基本理论与应用研究(E-mail:xiao.zhi.hu@uwa.edu.au). E-mail:xiao.zhi.hu@uwa.edu.au
  • 作者简介:管俊峰(1980-),男,河南许昌人,副教授,博士,硕导,从事混凝土断裂力学研究(E-mail:guanjunfeng1980@126.com);谢超鹏(1989-),男,河南许昌人,博士生,从事混凝土材料与结构研究(E-mail:1115646292@qq.com);姚贤华(1976-),男,河南许昌人,实验师,博士,从事混凝土材料性能研究(E-mail:yaoxianhua@ncwu.edu.cn);白卫峰(1982-),男,河南鹤壁人,副教授,博士,硕导,从事混凝土损伤与断裂力学研究(E-mail:yf9906@163.com)
  • 基金资助:
    国家自然科学基金面上项目(51779095; 51679092);郑州市科技攻关项目(153PKJGG111,153PKJGG109)

DETERMINATION OF FRACTURE TOUGHNESS AND YIELD STRENGTH OF HOT ROLLED CARBON STEEL BASED ON BOUNDARY EFFECT THEORY

GUAN Jun-feng1, XIE Chao-peng1, HU Xiao-zhi2, YAO Xian-hua1, BAI Wei-feng1   

  1. 1. School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450045, China;
    2. School of Mechanical and Chemical Engineering, University of Western Australia, Perth, WA 6009, Australia
  • Received:2017-12-27 Revised:2018-08-07 Online:2019-03-29 Published:2019-03-16

摘要: 该文研究确定热轧碳素钢的材料韧度与强度特性,提出一种确定热轧碳素钢材料的断裂韧度与屈服强度的模型及方法。建立了等效裂缝长度、名义应力等具体设计参数的计算表达式。通过相同尺寸而不同初始缝高比的单边拉伸Q235B热轧碳素钢板的系列试验,证明所提模型及方法的合理性与适用性。所提模型及方法只需由小尺寸单边裂缝钢板的拉伸试验测得的屈服荷载,即可同时确定出热轧碳素钢平面应力条件下的断裂韧度KC及屈服强度σY。采用该文所提方法确定热轧碳素钢的材料特性,试验试样不需要满足现行国内外规范对试验试样尺寸、型式,加载条件等的严格规定,试样不需要预制疲劳裂纹。

关键词: 边界效应理论, 热轧碳素钢, 断裂韧度, 屈服强度, 平面应力

Abstract: The material properties of hot rolled plain carbon steel were studied using boundary effect theory, linked to the properties of toughness and strength. The method for determining the fracture toughness and yield strength of hot rolled plain carbon steel was proposed. The formulas for design parameters ae and σn were obtained. Based on the experimental research on the identical size steel plates of Q235 under tension with different a-ratio=a0/W (ratio of initial cracks a0 and plate size W), the reasonability and availability of this model and appropriate method were experimentally confirmed. The plain stress fracture toughness and yield strength can be measured through the small size single edge notch test (SENT) hot rolled plain carbon steel specimens of a single size with different initial cracks. On top of that, the specimens using this proposed method do not meet the size, pattern and loading requirement from current codes, and do not need the fatigue cracks.

Key words: boundary effect theory, hot rolled plain carbon steel, fracture toughness, yield strength, plane stress

中图分类号: 

  • TG142.1
[1] GB/T 4161-2007, 金属材料平面应变断裂韧度KIC试验方法[S]. 北京:中国标准出版社, 2007. GB/T 4161-2007, Metallic materials-Determination of plane-strain fracture toughness[S]. Beijng:Standards Press of China, 2007. (in Chinese)
[2] GB/T 21143-2007, 金属材料准静态断裂韧度的统一试验方法[S]. 北京:中国标准出版社, 2007. GB/T 21143-2007, Metallic materials-Unified method of test for determination of quasistatic fracture toughness[S]. Beijing:Standards Press of China, 2007. (in Chinese)
[3] GB/T 7732-2008, 金属材料表面裂纹拉伸试样断裂韧度试验方法[S]. 北京:中国标准出版社, 2008. GB/T 7732-2008, Metallic materials-Fracture toughness testing method with surface crack tension[S]. Beijing:Standards Press of China, 2008. (in Chinese)
[4] ASTM E399-90, Standard test method for plane-strain fracture toughness testing of metallic materials[S]. American Society for Testing and Materials, Philadelphia, 1990.
[5] ASTM E399-12e2, Standard test method for linear-elastic plane-strain fracture toughness testing of high strength metallic materials[S]. Philadelphia:American Society for Testing and Material, 2013.
[6] BS EN ISO 12737:1999, Metallic materialsDetermination of plane-strain fracture toughness[S]. London:BSI, 1999.
[7] 邢佶慧, 郭长岚, 张沛, 等. Q235B钢材的微观损伤模型韧性参数校正[J]. 建筑材料学报, 2015, 18(2):228-236. Xing Jihui, Guo Changlan, Zhang Pei, et al. Calibrations of toughness parameters of microscopic damage model for steel Q235B[J]. Journal of Build Materials, 2015, 18(2):228-236. (in Chinese)
[8] Gajdoš Lu, Šperl M, Siegl J. Apparent fracture toughness of low-carbon steel CSN 411353 as related to stress corrosion cracks[J]. Materials & Design, 2011, 3032(8):4348-4353.
[9] Zhu X K, Joyce J A. Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization[J]. Engineering Fracture Mechanics, 2012, 85(5):1-46.
[10] Bach J, Möller J J, Göken M, et al. On the transition from plastic deformation to crack initiation in the high-and very high-cycle fatigue regimes in plain carbon steels[J]. International Journal of Fatigue, 2016, 93(12):281-291.
[11] 黄学伟, 张旭, 苗同臣. 建筑结构钢超低周疲劳断裂破坏的损伤预测模型[J]. 工程力学, 2017, 34(6):101-108. Huang Xuewei, Zhang Xu, Miao Tongchen. A damage prediction model for ultra low cycle fatigue failure of building structural steel[J]. Engineering Mechanics, 2017, 34(6):101-108. (in Chinese)
[12] 施刚, 陈玉峰. 基于微观机理的Q460钢材角焊缝搭接接头延性断裂研究[J]. 工程力学, 2017, 34(4):13-21. Shi Gang, Chen Yufeng. Investigation on the ductile fracture behavior of Q460 steel fillet welded joints based on micro-mechanics[J]. Engineering Mechanics, 2017, 34(4):13-21. (in Chinese)
[13] 刘希月, 王元清, 石永久,等. 高强度钢框架梁柱节点焊接构造的断裂性能试验研究[J]. 工程力学, 2018, 35(5):54-64. Liu Xiyue, Wang Yuanqing, Shi Yongjiu, et al. Experimental study on the weld fracture behavior of high strength steel beam-to-column connections[J]. Engineering Mechanics, 2018, 35(5):54-64. (in Chinese)
[14] Wilson ML, Hawley RH, Duffy J. The effect of loading rate and temperature on fracture initiation in 1020 hot-rolled steel[J]. Engineering Fracture Mechanics, 1980, 13(2):371-385.
[15] Lee S. Void initiation in ductile fracture[J]. Scripta Metallurgica, 1988, 22(1):59-64.
[16] 赵章焰, 吕运冰, 孙国正. J积分法测量低碳钢Q235的断裂韧性KIC[J]. 武汉理工大学学报, 2002, 24(4):111-112. Zhao Zhangyan, Lu Yunbing, Sun Guozheng. Experiment measuring fracture toughness of Q235 steel by J integral[J]. Journal of Wuhan University of Technology, 2002, 24(4):111-112. (in Chinese)
[17] 赵章焰, 孙国正. 用柔度标定法测量Q235钢断裂韧性[J]. 武汉理工大学学报(交通科学与工程版), 2002, 26(4):441-443. Zhao Zhangyan, Sun Guozheng. Measuring fracture toughness of Q235 steel using flexible method[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2002, 26(4):441-443. (in Chinese)
[18] Hu X Z, Wittman F. Size effect on toughness induced by crack close to free surface[J]. Engineering Fracture Mechanics, 2000, 65(2/3):209-221.
[19] Hu X Z, Duan K. Size effect:Influence of proximity of fracture process zone to specimen boundary[J]. Engineering Fracture Mechanics, 2007, 74(7):1093-1100.
[20] Hu X Z, Duan K. Size effect and quasi-brittle fracture:the role of FPZ[J]. International Journal of Fracture, 2008,154(1):3-14.
[21] Hu X Z, Duan K. Mechanism behind the size effect phenomenon[J]. Journal of Engineering Mechanics, ASCE, 2010, 136(1):60-68.
[22] Wang Y S, Hu X Z, Li L, et al. Determination of tensile strength and fracture toughness of concrete using notched 3-p-b specimens[J]. Engineering Fracture Mechanics, 2016, 160(7):67-77.
[23] Guan Junfeng, Hu X Z, Li Qingbin. In-depth analysis of notched 3-p-b concrete fracture[J]. Engineering Fracture Mechanics, 2016, 165(10):57-71.
[24] 管俊峰,胡晓智,王玉锁,等. 用边界效应理论考虑断裂韧性和拉伸强度对破坏的影响[J]. 水利学报, 2016, 47(10):1298-1306. Guan Junfeng, Hu Xiaozhi, Wang Yusuo, et al. Effect of fracture toughness and tensile strength on fracture based on boundary effect theory[J]. Journal of Hydraulic Engineering, 2016, 47(10):1298-1306. (in Chinese)
[25] 管俊峰, 王强, Hu Xiaozhi, 等. 考虑骨料尺寸的混凝土岩石边界效应断裂模型[J]. 工程力学, 2017, 34(12):22-30. Guan Junfeng, Wang Qiang, Hu Xiaozhi, et al. Boundary effect fracture model for concrete and granite considering aggregate size[J]. Engineering Mechanics, 2017, 34(12):22-30. (in Chinese)
[26] Hu X Z, Guan Junfeng, Wang Yusuo, et al. Comparison of boundary and size effect models based on new developments[J]. Engineering Fracture Mechanics, 2017, 175(4):146-167.
[27] Junfeng Guan, Xiaozhi Hu, Xianhua Yao, et al. Fracture of 0.1 and 2 m long mortar beams under three-pointbending[J]. Materials & Design, 2017, 133(11):363-375.
[28] Junfeng Guan, Xiaozhi Hu, Chaopeng Xie, et al. Wedge-splitting tests for tensile strength and fracture toughness of concrete[J]. Theoretical and Applied Fracture Mechanics, 2018, 93(2):263-275.
[29] Tada H I, Paris P C, Irwin G R. The analysis of cracks handbook[M]. New York:ASME Press, 2000.
[30] Murakami Y. Stress intensity factors hand book[M]. Oxford:Pergamon Press, 1987.
[31] Wang Limin, Feng Ying, Chen Fanxiu, et al. Elastic-plastic test of Q235 steel bending beam with cracking resistance[J]. Journal of Iron and Steel Research, International, 2013, 20(11):57-66.
[1] 管俊峰, 姚贤华, 白卫峰, 陈记豪, 付金伟. 由小尺寸试件确定混凝土的断裂韧度与拉伸强度[J]. 工程力学, 2019, 36(1): 70-79,87.
[2] 徐平, 胡晓智, 张敏霞, 马金一. 考虑骨料体积含量影响的混凝土准脆性断裂预测模型及应用[J]. 工程力学, 2018, 35(10): 75-84.
[3] 赵燕茹, 王磊, 韩霄峰, 时金娜. 冻融条件下玄武岩纤维混凝土断裂韧度研究[J]. 工程力学, 2017, 34(9): 92-101.
[4] 管俊峰, 王强, HU Xiaozhi, 白卫峰, 姜斌. 考虑骨料尺寸的混凝土岩石边界效应断裂模型[J]. 工程力学, 2017, 34(12): 22-30.
[5] 何强, 马大为, 张震东, 姚琳. 功能梯度蜂窝材料的面内冲击性能研究[J]. 工程力学, 2016, 33(2): 172-178.
[6] 何强, 马大为, 张震东. 分层屈服强度梯度蜂窝材料的动力学性能研究[J]. 工程力学, 2015, 32(4): 191-196.
[7] 管俊峰, 李庆斌, 吴智敏. 采用峰值荷载法确定全级配水工混凝土断裂参数[J]. 工程力学, 2014, 31(8): 8-13.
[8] 王春生, 段兰, 胡景雨, 郑丽. 桥梁高性能钢HPS485W断裂韧性试验研究[J]. 工程力学, 2013, 30(8): 54-59.
[9] 刘晓洲,檀永刚,李洪升,白会人. 水库护坡静冰压力及断裂韧度测试研究[J]. 工程力学, 2013, 30(5): 112-117.
[10] 倪 敏,苟小平,王启智. 霍普金森杆冲击压缩单裂纹圆孔板的岩石动态断裂韧度试验方法[J]. 工程力学, 2013, 30(1): 365-372.
[11] 王军, 卢立新. 蜂窝纸板面内平台应力表征[J]. 工程力学, 2012, 29(8): 354-359,365.
[12] 刘艳辉;赵世春;强士中. 阻尼比对延性需求谱的影响[J]. 工程力学, 2011, 28(5): 200-206.
[13] 张秀芳;徐世烺. 权函数法计算的混凝土断裂韧度[J]. 工程力学, 2011, 28(4): 58-062,.
[14] 罗 林;王启智. 用U形切槽梁同时测定准脆性材料的拉伸强度和断裂韧度:理论分析[J]. 工程力学, 2009, 26(9): 244-250.
[15] 冯 峰;韦重耕;王启智. 用中心直裂纹平台巴西圆盘测试岩石动态断裂韧度的尺寸效应[J]. 工程力学, 2009, 26(4): 167-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日