工程力学 ›› 2019, Vol. 36 ›› Issue (3): 224-230,239.doi: 10.6052/j.issn.1000-4750.2017.12.0914

• 机械工程学科 • 上一篇    下一篇

管道承插式接口轴向力学性能试验研究与数值模拟

钟紫蓝, 王书锐, 杜修力, 李立云, 侯本伟   

  1. 北京工业大学城市与工程安全减灾教育部重点实验室, 北京 100124
  • 收稿日期:2017-12-01 修回日期:2018-04-02 出版日期:2019-03-29 发布日期:2019-03-16
  • 通讯作者: 李立云(1973-),男,河北人,副教授,博士,硕导,主要从事地下结构抗震研究(E-mail:lly@bjut.edu.cn). E-mail:lly@bjut.edu.cn
  • 作者简介:钟紫蓝(1986-),男,江西人,讲师,博士,硕导,主要从事地下结构抗震研究(E-mail:zilanzhong@bjut.edu.cn);王书锐(1993-),男,河北人,硕士生,主要从事地下结构抗震研究(E-mai:Sucre_Wang@163.com);杜修力(1962-),男,四川人,教授,博士,博导,主要从事地震工程和结构动力学等研究(E-mai:duxiuli@bjut.edu.cn);侯本伟(1984-),男,山东人,讲师,博士,硕导,主要从事供水管网抗震性能和优化设计研究(E-mail:benweihou@163.com)
  • 基金资助:
    国家自然科学基金项目(51508013);北京市博士后基金项目(2016ZZ-08);朝阳区博士后基金项目(2016ZZ-01-04)

EXPERIMENTAL AND NUMERICAL STUDY ON AXIAL MECHANICAL PROPERTIES OF PIPELINE UNDER PSEUDO-STATIC LOADING

ZHONG Zi-lan, WANG Shu-rui, DU Xiu-li, LI Li-yun, HOU Ben-wei   

  1. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
  • Received:2017-12-01 Revised:2018-04-02 Online:2019-03-29 Published:2019-03-16

摘要: 通过球墨铸铁供水管线承插式接口抗拉静载力学性能试验,分析管道接口轴向的拉伸力学性能和破坏模式,并建立相应管道接口受力分析的有限元数值模型。在外部无覆土、加压注水条件下,对球墨铸铁输水管道承插式接口进行拟静力拉拔试验,模拟其在地震作用等往复荷载下的轴向受力与变形特征。试验结果表明,加载方式以及管道内部水压等对接口的轴向抗拉力学性能和破坏方式的影响不大,抗拉极限位移达到60 cm。基于OpenSees计算平台建立管道接口有限元模型,并对试验结果进行了模拟,结果表明建立的管道接口有限元模型能够较好地模拟管道接口在轴向往复荷载作用下的刚度退化和耗能等力学特征,为埋地管道在复杂轴向荷载作用下的受力分析和性能评估提供了必要的试验数据和计算模型。

关键词: 球墨铸铁管道, 承插式接口, 力学性能, 抗拉强度, 数值模拟

Abstract: A series of pseudo-static tensile tests were performed on the push-on joints of ductile iron water pipeline specimens to investigate the axial mechanical properties and failure mechanism of the joints. A new finite element model for the push-on joint was also developed in this study. The pseudo-static tests were carried out on the push-on joints of ductile iron pipeline specimens using both monotonic and cyclic loading to investigate the behavior of the joints under repetitive axial loading, such as seismic loads during an earthquake event. It was found that the effects of the different loading protocols and internal water pressure on the axial response and failure modes of the push-on joint were negligible in this experimental study. The tension displacement limit of the joints reached 60 cm. Finally, a new finite element joint model was developed in OpenSees to simulate the axial behavior of the push-on joint observed during the experiments. The proposed numerical joint model can well capture the characteristic axial response of the joint, such as axial stiffness degradation and energy dissipation. Both the experimental and numerical results provide a support in assessing the performance of the push-on joints of water pipelines subjected to complex axial loading.

Key words: ductile iron pipe, push-on joint, mechanical properties, tensile strength, numerical simulation

中图分类号: 

  • TU991.36
[1] Scawthorn C, O'Rourke T D, Blackburn F T. The 1906 San Francisco earthquake and fire-enduring lessons for fire protection and water supply[J]. Earthquake Spectra, 2006, 22(Suppl 2):135-158.
[2] O'Rourke T D, Bonneau A L, Pease J W, et al. Liquefaction and ground failures in San Francisco[J]. Earthquake Spectra, 2006, 22(Suppl 2):91-112.
[3] O'Rourke T D, Hamada M. Large ground deformations and their effects on lifeline facilities:1971 San Fernando earthquake[M]//Case studies liquefaction and lifeline performance during past earthquakes:United States case studies. USA:US National Center for Earthquake Engineering Research (NCEER), 1992:1-85.
[4] Ayala A G, O'Rourke M J, Escobar J A. Evaluation of the effects of the 1985 Michoacán earthquake on the water systems in metropolitan Mexico City[J]. Earthquake Spectra, 1990, 6(3):473-496.
[5] 舒亚俐. 既有给排水管线的震害及管道抗震能力关键问题综合分析[J]. 城市道桥与防洪, 2013(3):111-114. Shu Yali. Comprehensive analysis of key problems of seismic damage to sewers and seismic capacity of pipelines[J]. Urban Roads Bridges and Flood Control, 2013(3):111-114. (in Chinese)
[6] 孙路. 基于典型生命线工程震害评定地震烈度的研究[D]. 哈尔滨:中国地震局工程力学研究所, 2015. Sun Lu. Research on earthquake intensity evaluation based on earthquake damage of typical lifeline engineering[D]. Harbin:Institute of Engineering Mechanics, China Earthquake Administration, 2015.
[7] 何政, 安宁, 徐菁菁. 考虑损伤的结构抗震可恢复性[J]. 工程力学, 2017, 34(5):179-187. He Zheng, An Ning, Xu Jingjing. Structural seismic resilience considering damage[J]. Engineering Mechanics, 2017, 34(5):179-187. (in Chinese)
[8] 刘智, 郭恩栋, 胡少卿, 等. 供热管道地震易损性分析[J]. 工程力学, 2013, 30(7):187-192. Liu Zhi, Guo Endong, Hu Shaoqing, et al. Seismic vulnerability analysis of heat supply pipeline[J]. Engineering Mechanics, 2013, 30(7):187-192. (in Chinese)
[9] O'Rourke M J, Jiu X. Seismic design of buried and offshore pipelines[R]. New York:State University of New York at Buffalo:Multidisciplinary Center for Earthquake Engineering Research, 2012.
[10] O'Rourke T D, Jeon S S, Toprak S, et al. Earthquake response of underground pipeline networks in Christchurch, NZ[J]. Earthquake Spectra, 2014, 30(1):183-204.
[11] Elhmadi K, O'Rourke M J. Seismic damage to segmented buried pipelines[J]. Earthquake Engineering & Structural Dynamics, 1990, 19(4):529-539.
[12] Hosseini M, Ajideh H. Seismic analysis of buried jointed pipes considering multi-node excitations and wave propagation phenomena[M]//Pipelines 2001:Advances in Pipelines Engineering and Construction. USA:Advances in Pipelines Engineering and Construction, 2001:1-12.
[13] Shi P. Seismic wave propagation effects on buried segmented pipelines[J]. Soil Dynamics and Earthquake Engineering, 2015, 72:89-98.
[14] 周静海, 赵海艳, 魏立群. 球墨铸铁供水管线在地震作用下功能性实验分析[J]. 沈阳建筑大学学报:自然科学版, 2008, 24(2):196-199. Zhou Jinghai, Zhao Haiyan, Wei Liqun. Experimental research on functionality of ductile cast iron pipelines under the earthquake[J]. Journal of Shenyang Jianzhu University:Natural Science, 2008, 24(2):196-199. (in Chinese)
[15] Han Y, Song H, Zhang L, et al. Experimental research on ductile iron pipes with rubber gasketed joints[M]//Pipelines 2010:Climbing New Peaks to Infrastructure Reliability:Renew, Rehab, and Reinvest. USA:ASCE, 2010:1170-1176.
[16] Zhong Z, Filiatrault A, Aref A. Experimental performance evaluation of pipelines rehabilitated with cured-in-place-pipe liner under earthquake transient ground deformations[J]. Journal of Infrastructure Systems, 2017, 23(2):04016036.
[17] Zhong Z, Aref A, Filiatrault A. Seismic performance evaluation of buried pipelines retrofitted with cured-in-place-pipe lining technology[C]//16th World Conference on Earthquake Engineering(16WCEE). Santiago, Proceedings of 16WCEE, 2017.
[18] Zhong Z, Filiatrault A, Aref A. Numerical simulation and seismic performance evaluation of buried pipelines rehabilitated with cured-in-place-pipe liner under seismic wave propagation[J]. Earthquake Engineering & Structural Dynamics, 2017, 46(5):811-829.
[19] Zhong Z, Bouziou D, Wham B, et al. Seismic testing of critical lifelines with cured in place pipe lining technology[J]. Journal of Earthquake Engineering, 2014, 18(6):964-985.
[20] Vazouras P, Karamanos S A. Structural behavior of buried pipe bends and their effect on pipeline response in fault crossing areas[J]. Bulletin of Earthquake Engineering, 2017(2):1-26.
[21] 陈春光, 杨庆华, 孔杰, 等. 铸铁管道胶圈承插接口抗震性能试验研究[J]. 地震工程与工程振动, 2012, 32(3):104-108. Chen Chunguang, Yang Qinghua, Kong Jie, et al. Experimental research on seismic capability of cast-iron pipe with rubber gasket joints[J]. Journal of Earthquake and Engineering Vibration, 2012, 32(3):104-108. (in Chinese)
[22] 曹建国. 场地大变形下供水管道破坏试验及地震安全评估[D]. 杭州:浙江大学, 2014. Cao Jianguo. Test and seismic assessment of water supply pipeline under large ground deformation[D]. Hangzhou:Zhejiang University, 2014.
[23] Mazzoni S, McKenna F, Fenves G L. OpenSees command language manual[M]. Berkeley, USA:University of California, 2009.
[24] 刘为民, 孙绍平. 管道接口的抗震试验研究[C]//第五届全国地震工程会议, 北京:第五届全国地震工程会议论文集, 1998:970-975. Liu Weimin, Sun Shaoping. Shaking table test of pipe with junctions[C]//Proceeding of Fifth China Symposia on Earthquake Engineering, Beijing:Proceedings of 5CSEE, 1998:970-975. (in Chinese)
[25] 韩阳, 张珂华, 段君峰. 球墨铸铁给水管道柔性接口轴向拉拔试验研究[J]. 四川建筑科学研究, 2017, 43(4):80-83. Han Yang, Zhang Kehua, Duan Junfeng. The pull-out test of ductile cast iron pipe with flexible joint[J]. Sichuan Building Science, 2017, 43(4):80-83. (in Chinese)
[26] 周静海, 李宏男, 宋阳. 埋地球墨铸铁供水管道轴向拉拔试验[J]. 沈阳建筑大学学报(自然科学版), 2009, 25(3):474-477. Zhou Jinghai, Li Hongnan, Song Yang. Pullout test research on the underground water pipelines[J]. Journal of Shenyang Jianzhu University:Natural Science, 2009, 25(3):474-477. (in Chinese)
[27] GB 50032-2003, 室外给水排水和燃气热力工程抗震设计规范[S]. 北京:中国建筑工业出版社, 2003. GB 50032-2003, Code for seismic design of outdoor water supply, sewerage, gas and heating engineering[S]. Beijing:China Architecture and Building Press, 2003. (in Chinese)
[28] 蔡小宁, 孟少平. 预应力自复位混凝土框架节点抗震性能数值模拟[J]. 工程力学, 2016, 33(3):143-151. Cai Xiaoning, Meng Shaoping. Numerical analysis for seismic behavior of self-centering post-tensioned precast beam-to-column connections[J]. Engineering Mechanics, 2016, 33(3):143-151. (in Chinese)
[1] 陈云, 蒋欢军, 刘涛, 万志威, 鲁正. 分级屈服型金属阻尼器抗震性能研究[J]. 工程力学, 2019, 36(3): 53-62.
[2] 李天娥, 孙晓颖, 武岳, 王长国. 平流层飞艇气动阻力的参数分析[J]. 工程力学, 2019, 36(1): 248-256.
[3] 高良田, 王键伟, 王庆, 贾宾, 王永魁, 石莉. 破冰船在层冰中运动的数值模拟方法[J]. 工程力学, 2019, 36(1): 227-237.
[4] 陈云, 陈超, 蒋欢军, 万志威, 刘涛. O型钢板-高阻尼黏弹性复合型消能器的力学性能试验与分析[J]. 工程力学, 2019, 36(1): 119-128.
[5] 孙超杰, 李庆华, 吕君锋. 型钢-UHTCC组合梁静载力学性能试验研究[J]. 工程力学, 2018, 35(S1): 62-66,79.
[6] 唐琼, 李易, 陆新征, 闫维明. 多螺箍筋柱轴压承载力研究[J]. 工程力学, 2018, 35(S1): 166-171.
[7] 翟金金, 董胜. 夏威夷ALEUTIAN海啸的NEOWAVES数值模拟[J]. 工程力学, 2018, 35(S1): 359-364.
[8] 张明聚, 杨萌, 王锡军. 基坑工程内支撑活络端结构革新性研究[J]. 工程力学, 2018, 35(S1): 88-94,119.
[9] 祝明桥, 张紫薇, 蒋俏, 石卫华. 双层交通混凝土箱梁传力路径试验研究与分析[J]. 工程力学, 2018, 35(S1): 181-187.
[10] 钱蓝萍, 李易, 陆新征, 闫维明. 小型汽车撞击后框架柱剩余承载力的数值研究[J]. 工程力学, 2018, 35(S1): 313-319.
[11] 张佩, 杜修力, 金浏, 路德春, 龚秋明. 块石长轴倾角对土石混合体宏观力学性能的影响研究[J]. 工程力学, 2018, 35(9): 64-72.
[12] 吴志军, 张鹏林, 刘泉声, 李万峰, 江维中. 基于零厚度粘聚力单元的钢筋混凝土板在爆炸荷载下的动态破坏过程分析[J]. 工程力学, 2018, 35(8): 79-90,110.
[13] 李潇, 方秦, 孔祥振, 吴昊. 砂浆材料SHPB实验及惯性效应的数值模拟研究[J]. 工程力学, 2018, 35(7): 187-193.
[14] 石础, 罗宇, 胡志强. 考虑失效的非线性Burgers'海冰模型及其数值应用[J]. 工程力学, 2018, 35(7): 249-256.
[15] 刘明明, 李宏男, 付兴. 一种新型自复位SMA-剪切型铅阻尼器的试验及其数值分析[J]. 工程力学, 2018, 35(6): 52-57,67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日