工程力学 ›› 2019, Vol. 36 ›› Issue (3): 95-104.doi: 10.6052/j.issn.1000-4750.2018.01.0055

• 土木工程学科 • 上一篇    下一篇

基于共旋坐标和力插值纤维单元的RC框架结构连续倒塌构造方法

杜轲, 滕楠, 孙景江, 燕登, 骆欢   

  1. 中国地震局工程力学研究所地震工程与工程振动重点实验室, 哈尔滨 150080
  • 收稿日期:2018-01-17 修回日期:2018-06-05 出版日期:2019-03-29 发布日期:2019-03-16
  • 通讯作者: 杜轲(1985-),男,河南人,副研究员,博士,主要从事结构抗震方面研究(E-mail:duke@iem.ac.cn). E-mail:duke@iem.ac.cn
  • 作者简介:滕楠(1992-),男,湖南人,硕士生,主要从事结构抗连续倒塌方面研究(E-mail:fhtengnan@foxmail.com);孙景江(1953-),男,山东人,研究员,博士,博导,主要从事结构抗震方面研究(E-mail:jingjiangsun@sina.com);燕登(1994-),男,山西人,硕士生,主要从事结构抗震方面研究(E-mail:yandcqu@foxmail.com);骆欢(1988-),男,河南人,博士生,主要从事结构抗震方面研究(E-mail:luohuan_iem@163.com)
  • 基金资助:
    中国地震局工程力学研究所基本科研业务费项目(2016A05,2016B04);国家重点研发计划项目(2017YFC1500605);国家自然科学基金项目(51878631)

A PROGRESSIVE COLLAPSE ANALYTICAL MODEL OF RC FRAME STRUCTURES BASED ON COROTATIONAL FORMULATION FOR FORCE-BASED FIBER ELEMENTS

DU Ke, TENG Nan, SUN Jing-jiang, YAN Deng, LUO Huan   

  1. Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China
  • Received:2018-01-17 Revised:2018-06-05 Online:2019-03-29 Published:2019-03-16

摘要: 悬链机制会使钢筋混凝土框架结构产生有助于抵抗连续倒塌的附加承载能力,对结构抗连续倒塌能力至关重要。悬链机制处于几何大变形和材料非线性下降段的状态下,需要同时考虑材料非线性和几何非线性,因此对数值分析模型提出了更高的要求。为了解决基于力插值的纤维单元同时处理材料非线性和几何非线性的问题,该文采用基于共旋坐标法,提出了一种基于共旋坐标法的力插值纤维单元。该单元在形成中把变形体和刚体分开,局部坐标系的变形体内采用纤维划分考虑材料非线性,然后加上刚体位移,从局部坐标系到整体坐标系的转换中采用共旋坐标法以考虑几何非线性,给出了二维单元形成原理及非线性求解过程。实例分析结果表明基于共旋坐标法的力插值纤维单元能够较准确的模拟RC框架结构连续倒塌,梁机制阶段主要是材料非线性起控制作用,悬链线机制阶段主要是几何非线性起控制作用。

关键词: RC框架结构, 连续倒塌, 悬链线机制, 共旋坐标法, 力插值纤维单元

Abstract: Previous studies have shown that the catenary mechanism can bring RC frame structures additional load-bearing capacity to resist progressive collapse, and is essential to the progressive collapse resisting capacity of structures. The catenary mechanism occurs under the state of large geometric deformation and the material is in the nonlinear descent stage. Therefore, it is necessary to consider both material nonlinearity and geometric nonlinearity, which requires a more complicated numerical model. To co-process the material nonlinearity and geometric nonlinearity using fiber elements, a force interpolation fiber element based on co-rotational procedure is proposed in this paper. The element separates the deformable body from the rigid body in the formation. For the deformable body in the local coordinate system, the material nonlinearity is considered, and then the rigid body displacement is added. To consider the geometric nonlinearity in the transition from the local coordinate system to the global coordinate system, the co-rotational procedure is used. The formation principle of two-dimensional elements and the nonlinear solving process are given in the context. The example results show that the force interpolation fiber element based on the co-rotational procedure can accurately simulate the progressive collapse of RC frame structures. In the stage of beam mechanism, the material nonlinearity plays the key role, while whereas in the stage of catenary mechanism, the geometric nonlinear plays the key role.

Key words: RC frame structures, progressive collapse, catenary action, corotational formulation, force-based fiber element

中图分类号: 

  • TU973+.2
[1] 易伟建, 何庆锋, 肖岩. 钢筋混凝土框架结构抗倒塌性能的试验研究[J]. 建筑结构学报, 2007, 28(5):104-109. Yi Weijian, He Qingfeng, Xiao Yan. Collapse performance of RC frame structure[J]. Journal of Building Structures, 2007, 28(5):104-109. (in Chinese)
[2] 苏幼坡, 王兴国, 宋晓胜, 等. 钢筋混凝土框架梁拱效应的试验研究[J]. 西安建筑科技大学学报(自然科学版), 2009, 41(4):477-484. Su Youpo, Wang Xingguo, Song Xiaosheng, et al. Experimental investigation on the arching action in reinforced concrete frame-beams[J]. Journal of Xi'an University of Architecture & Technology, 2009, 41(4):477-484. (in Chinese)
[3] 何庆锋, 易伟建. 考虑悬索作用钢筋混凝土梁柱子结构抗倒塌性能试验研究[J]. 土木工程学报, 2011, 44(4):52-59. He Qingfeng, Yi Weijian. Experimental study of the collapse-resistant behavior of RC beam-column sub-structures considering catenary action[J]. China Civil Engineering Journal, 2011, 44(4):52-59. (in Chinese)
[4] 王浩, 李易, 陆新征, 等. 单层钢筋混凝土框架结构水平向连续倒塌试验研究[J]. 建筑结构学报, 2016, 37(10):65-72. Wang Hao, Li Yi, Lu Xinzhen, et al. Experimental investigation on horizontal progressive collapse of one-story reinforced concrete frame[J]. Journal of Building Structures, 2016, 37(10):65-72. (in Chinese)
[5] Sasani M, Werner A, Kazemi A. Bar fracture modeling in progressive collapse analysis of reinforced concrete structures[J]. Engineering Structures, 2011, 33(2):401-409.
[6] Qian K, Li B, Ma J X. Load-carrying mechanism to resist progressive collapse of RC buildings[J]. Journal of Structural Engineering, 2014, 141(2):04014107-1-04014107-14.
[7] 孟宝, 钟炜辉, 郝际平. 不同跨度比下栓焊刚性连接梁柱子结构抗倒塌性能试验研究[J]. 工程力学, 2018, 35(1):79-87. Meng Bao, Zhong Weihui, Hao Jiping. Experimental study on anti-collapse performance for beam-column assemblies with bolt and weld rigid connection based on different span ratio[J]. Engineering Mechanics, 2018, 35(1):79-87. (in Chinese)
[8] 王俊杰, 王伟, 孙昕. 压型钢板组合梁中柱子结构的抗连续倒塌试验[J]. 工程力学, 2017, 34(增刊1):149-153, 178. Wang Junjie, Wang Wei, Sun Xin. Experimental behavior of composite beam-column joints with steel profiled decking in a middle-column-removal scenario[J]. Engineering Mechanics, 2017, 34(Suppl1):149-153, 178. (in Chinese)
[9] Yu J, Luo L, Li Y. Numerical study of progressive collapse resistance of RC beam-slab substructures under perimeter column removal scenarios[J]. Engineering Structures, 2018, 159:14-27.
[10] Ren P, Li Y, Lu X, et al. Experimental investigation of progressive collapse resistance of one-way reinforced concrete beam-slab substructures under a middlecolumn-removal scenario[J]. Engineering Structures, 2016, 118:28-40.
[11] 何政, 黄国辉. 框架结构悬链线效应研究新进展[J]. 力学进展, 2012, 42(5):547-561. He Zheng, Huang Guohui. Progress in studies of catenary action in frame structures[J]. Advances in Mechanics, 2012, 42(5):547-561. (in Chinese)
[12] Scott M H, Fenves G L. Plastic hinge integration methods for force-based beam-column elements[J]. Journal of Structural Engineering, ASCE, 2006, 132(2):244-252.
[13] 杜轲, 孙景江, 许卫晓. 纤维模型中单元、截面及纤维划分问题研究[J]. 地震工程与工程振动, 2012, 32(10):39-46. Du Ke, Sun Jingjiang, Xu Weixiao. The division of element, section and fiber in fiber mode[J]. Earthquake Engineering and Engineering Vibration, 2012, 32(10):39-46. (in Chinese)
[14] Yu J, Tan K H. Experimental and numerical investigation on progressive collapse resistance of reinforced concrete beam column sub-assemblages[J]. Engineering Structures, 2013, 55(4):90-106.
[15] Maekawa K, Okamura H, Pimanmas A. Nonlinear mechanics of reinforced concrete[M]. London:Spon Press, 2003.
[16] 梁益, 陆新征, 李易, 等. 3层RC框架的抗连续倒塌设计[J]. 解放军理工大学自然科学版, 2007, 8(6):659-664. Liang Yi, Lu Xinzheng, Li Yi, et al. Design method to resist progressive collapse for a three story RC frame[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2007, 8(6):659-664. (in Chinese)
[17] 叶列平, 陆新征, 马千里, 等. 混凝土结构抗震非线性分析模型、方法及算例[J]. 工程力学, 2006, 23(s2):131-140. Ye Lieping, Lu Xinzheng, Ma Qianli, et al. Nonlinear analytical models, methods and examples for concrete structures subject to earthquake loading[J]. Engineering Mechanics, 2006, 23(s2):131-140. (in Chinese)
[18] 于晓辉, 钱凯, 吕大刚. 考虑悬链线效应的钢筋混凝土框架结构抗连续倒塌能力分析[J]. 建筑结构学报, 2017, 38(4):28-34. Yu Xiaohui, Qian Kai, Lü Dagang. Progressive collapse capacity analysis of reinforced concrete frame structures considering catenary action[J]. Journal of Building Structures, 2017, 38(4):28-34. (in Chinese)
[19] Mahasuverachai M. Inelastic analysis of piping and tubuar structures[R]. Earthquake Engineering Research Center, University of California, Berkeley. 1982.
[20] Brancaleoni F, Ciampi V, Di Antonio R. Rate-type models for non linear hysteretic structural behavior[M]. Palermo, Italy:EUROMECH Colloquium, 1983.
[21] Spacone Enrico, Ciampi V, Filippou F C. A beam element for seismic damage analysis[R]. Earthquake Engineering Research Center, University of California, Berkeley, August 1992.
[22] Kaba S, Mahin S A. Refined modeling of reinforced concrete columns for seismic analysis[R]. Earthquake Engineering Research Center, University of California, Berkeley, 1984.
[23] Zeris C A, Mahin S A. Analysis of reinforced concrete beam-columns under uniaxial excitation[J]. Journal of Structural Engineering, ASCE, 1988, 114(4):804-820.
[24] Zeris C A, Mahin S A. Behavior of reinforced concrete structures subjected to biaxial excitation[J]. Journal of Structural Engineering, ASCE, 1991, 117(9):2657-2673.
[25] Neuenhofer A, Filippou F C. Geometrically nonlinear flexibility-based frame finite element[J]. Journal of Structural Engineering, 1998, 124(6):704-711.
[26] 魏科. 基于CR列式的斜拉桥几何非线性分析[D]. 长安大学, 2009. Wei Ke. Geometrical nonlinearity analysis of cable-stayed bridges based on CR formulation[D]. Chang'an University, 2009. (in Chinese)
[27] 中国建筑学会抗震防灾分会建筑结构抗倒塌专业委员会, 清华大学. 2013年连续倒塌试验分析竞赛[EB]. http://www.collapse-prevention.net/show.asp?ID=20&adID=3.2013. Collapse Prevention Committee, Architectural Society of China, Tsinghua University. 2013 Progressive Collapse Test Competition[EB].http://www.collapse-prevention.net/show.asp?ID=20&adID=3.2013. (in Chinese)
[28] Mander J B, Priestley M J N, Park R. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114(8):1804-1826.
[1] 高佳明, 刘伯权, 黄华, 周长泉. 带板钢筋混凝土框架连续倒塌理论分析[J]. 工程力学, 2018, 35(7): 117-126.
[2] 王景玄, 王文达, 李华伟. 钢管混凝土平面框架子结构抗连续倒塌精细有限元分析[J]. 工程力学, 2018, 35(6): 105-114.
[3] 安宇骢, 谢楠, 贾影. 防连续倒塌高大模板支撑体系的两阶段设计研究[J]. 工程力学, 2017, 34(增刊): 289-294.
[4] 吕大刚, 代旷宇, 于晓辉, 李宁. FRP加固非延性RC框架结构的地震易损性分析[J]. 工程力学, 2017, 34(增刊): 49-53,70.
[5] 潘毅, 陈侠辉, 姚蕴艺, 邓开来. 基于抽柱法的无粘结预应力装配式框架结构连续倒塌分析[J]. 工程力学, 2017, 34(12): 162-170.
[6] 刁梦竹, 李易, 陆新征, 闫维明. 钢筋混凝土楼板连续倒塌的一种简化模拟方法[J]. 工程力学, 2016, 33(增刊): 72-78.
[7] 陆金钰, 董霄, 李娜, 武啸龙. 环箍-穹顶索杆结构局部断索抗倒塌能力分析[J]. 工程力学, 2016, 33(增刊): 173-178.
[8] 缪志伟, 宋前恩, 李爱群. 减震设计与抗震设计RC框架结构抗地震倒塌能力对比[J]. 工程力学, 2016, 33(8): 24-31.
[9] 喻莹, 谭长波, 金林, 王钦华, 朱兴一. 基于有限质点法的单层球面网壳强震作用下连续倒塌破坏研究[J]. 工程力学, 2016, 33(5): 134-141.
[10] 白久林, 欧进萍. 考虑模态侧向力组合的结构抗震性能评估方法[J]. 工程力学, 2016, 33(4): 58-66.
[11] 周育泷, 李易, 陆新征, 初明进, 任沛琪. 钢筋混凝土框架抗连续倒塌的压拱机制分析模型[J]. 工程力学, 2016, 33(4): 34-42.
[12] 徐颖, 韩庆华, 练继建. 单层球面网壳抗连续倒塌性能研究[J]. 工程力学, 2016, 33(11): 105-112.
[13] 岳健广, 钱江. RC框架结构多层次地震损伤演化分析方法[J]. 工程力学, 2015, 32(9): 126-134.
[14] 田相凯, 陈适才, 张磊, 李易, 闫维明. 基于能量的局部火灾引起钢结构连续倒塌简化分析方法[J]. 工程力学, 2015, 32(9): 135-140,148.
[15] 于婧, 刘小军, 邓明科. 带施工缝RC框架结构抗震性能的数值研究[J]. 工程力学, 2015, 32(8): 190-200.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日