工程力学 ›› 2019, Vol. 36 ›› Issue (3): 159-168.doi: 10.6052/j.issn.1000-4750.2018.01.0058

• 土木工程学科 • 上一篇    下一篇

新型组合剪力键抗剪机理及承载力计算方法研究

陈海1, 郭子雄1,2, 刘阳1,2, 郭利涛3   

  1. 1. 华侨大学土木工程学院, 福建, 厦门 361021;
    2. 华侨大学福建省结构工程与防灾重点实验室, 福建, 厦门 361021;
    3. 厦门理工学院应用数学学院, 福建, 厦门 361024
  • 收稿日期:2018-01-18 修回日期:2018-08-12 出版日期:2019-03-29 发布日期:2019-03-16
  • 通讯作者: 刘阳(1982-),男,山东人,副教授,博士,主要从事钢-混凝土组合结构研究(E-mail:lyliuyang@hqu.edu.cn). E-mail:lyliuyang@hqu.edu.cn
  • 作者简介:陈海(1990-),男,福建人,博士生,主要从事钢_混凝土组合结构研究(E-mail:1300222006@hqu.edu.cn);郭子雄(1967-),男,福建人,教授,博士,博导,院长,主要从事工程结构抗震防灾研究(E-mail:guozxcy@hqu.edu.cn);郭利涛(1982-),男,河南人,副教授,博士,主要从事数学研究(E-mail:guolitao@xmut.edu.cn)
  • 基金资助:
    国家自然科学基金项目(51878304,51578254);福建省科技计划重大项目(2015J4007)

STUDY ON THE SHEAR RESISTING MECHANISM AND STRENGTH FOR AN INNOVATIVE COMPOSITE SHEAR CONNECTOR

CHEN Hai1, GUO Zi-xiong1,2, LIU Yang1,2, GUO Li-tao3   

  1. 1. College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China;
    2. Key Laboratory for Structural Engineering and Disaster Prevention of Fujian Province, Huaqiao University, Xiamen, Fujian 361021, China;
    3. Department of Mathematics, Xiamen University of Technology, Xiamen, Fujian 361024, China
  • Received:2018-01-18 Revised:2018-08-12 Online:2019-03-29 Published:2019-03-16

摘要: 提出了一种带横向栓钉的新型组合PBL剪力键(简称组合剪力键),并开展了6个组合剪力键试件的静力推出试验。建立了组合剪力键的精细化有限元模型,在试验验证的基础上,开展了216个试件的数值模拟和参数分析。基于试验研究和有限元分析结果,对组合剪力键的受力机理进行了分析。研究表明:该组合剪力键具有良好的抗剪性能,其抗剪承载力由PBL部分的混凝土榫柱和横向栓钉共同提供,可按叠加原理进行计算。参数分析表明:增加栓钉直径和混凝土强度均可有效提高组合剪力键抗剪承载力。其中,当栓钉直径由16 mm增至22 mm时,其承载力约提高27.7%;当混凝土强度等级由C30提高至C50时承载力约提高20.6%。但增加开孔直径和肋板厚度对抗剪承载力的提高影响并不明显基于可靠度分析和叠加原理提出了该组合剪力键抗剪承载力计算公式。研究结果可为该新型剪力键的工程应用和后续研究提供参考。

关键词: 组合结构, 剪力连接件, 模型试验, 有限元模型, 抗剪机理

Abstract: This paper describes an innovative perfobond rib shear connector, which is welded with horizontal headed stud (denoted as composite connector hereinafter). Monotonic push-out tests of six specimens were carried out. Accurate nonlinear finite element models of the connector were established. A total of 216 push-out specimens were analyzed after they were calibrated against the experimental data in the scope of this study. Based on the experimental and numerical results, the shear resisting mechanism of the composite connector was analyzed. The results show that the composite connector has good shear resisting performance. Its shear strength, provided by the concrete dowels and horizontal headed studs, can be calculated by the superposition principle. The numerical results show that increases in the stud diameter and concrete strength would enhance the shear capacity of the composite connectors. The strength is increased by 27.7% when the stud diameter changed from 16 mm to 22 mm and increased by 20.6% when the concrete grade is changed from C30 to C50. The shear strength of the connector is affected slightly with an increase in the angles between the ribs. Several formulas of shear strength for the perforated rib shear connector and headed stud connector were estimated. Finally, a formula was proposed to predict the shear strength of a composite shear connector. This paper provides a reference for the application and further research of the composite connector.

Key words: composite structure, shear connectors, model test, FEM model, shear resisting mechanism

中图分类号: 

  • TU398.9
[1] 刘玉擎. 组合结构桥梁[M]. 北京:人民交通出版社, 2005:22. Liu Yuqing. Composite bridge[M]. Beijing:China Communication Press, 2005:22. (in Chinese)
[2] Ollgaard J G, Slutter R G, Fisher J W. Shear strength of stud connectors in lightweight and normal-weight concrete[J]. AISC Engineering Journal, 1971, 8(2):55-60.
[3] Leonhardt F, Andrä W, Andrä H P, et al. Neues, vorteilhaftes verbundmittel für stahlverbund-tragwerke mit hoher dauerfestigkeit[J]. Beton-und Stahl-Betonbau, 1987, 82(12):325-331.
[4] 聂建国, 李一昕, 陶慕轩, 等. 新型抗拔不抗剪连接件抗拔性能试验[J]. 中国公路学报, 2014, 27(4):38-45. Nie Jianguo, Li Yixin, Tao Muxuan, et al. Experimental research on uplift performance of a new type of uplift restricted-slip free connector[J]. China Journal of Highway and Transport, 2014, 27(4):38-45. (in Chinese)
[5] Kim S, Park S, Kim K, et al. Generalized formulation for shear resistance on Y-type perfobond rib shear connectors[J]. Journal of Constructional Steel Research, 2017, 128:245-260.
[6] Zheng S, Liu Y, Yoda T, et al. Parametric study on shear capacity of circular-hole and long-hole perfobond shear connector[J]. Journal of Constructional Steel Research, 2016, 117:64-80.
[7] GB 50917-2013, 钢-混凝土组合桥梁设计规范[S]. 北京:中国计划出版社, 2013. GB 50917-2013, Code for design of steel and concrete composite bridges[S]. Beijing:China Architecture Industry Press, 2013. (in Chinese)
[8] EN 1994-2:2005, Eurocode 4-Design of composite steel and concrete structures-Part 2:General rules and rules for bridges[S]. European Committee for Standardization, 2005.
[9] ANSI/AISC 341-16, Seismic provisions for structural steel buildings[S]. Chicago (IL):American Institute for Steel Construction, 2016.
[10] Precast/Prestressed Concrete Institute. PCI design handbook:Precast and prestressed concrete[M]. Chicago (IL):Precast/Prestressed Concrete Institute, 2004.
[11] 胡建华, 叶梅新, 黄琼. PBL剪力连接件承载力试验[J]. 中国公路学报, 2006, 19(6):65-72. Hu Jianhua, Ye Meixin, Huang Qiong. Model test of bearing capacity of PBL shear connector[J]. Chinese Road Transaction, 2006, 19(6):65-72. (in Chinese)
[12] 宗周红, 车惠民. 剪力连接件静载和疲劳试验研究[J]. 福州大学学报(自然科学版), 1999, 27(6):61-66. Zong Zhouhong, Che Huimin. Experimental study of shear connector under static and fatigue loading[J]. Journal of Fuzhou University (Natural Science), 1999, 27(6):61-66. (in Chinese)
[13] Oguejiofor E C, Hosain M U. Numerical analysis of push-out specimens with perfobond rib connectors[J]. Computers & Structures, 1997, 62(4):617-624.
[14] Medberry S B, Shahrooz B M. Perfobond shear connector for composite construction[J]. Engineering Journal-American Institute of Steel Construction, 2002, 39(1):2-12.
[15] 肖林, 强士中, 李小珍, 等. 考虑开孔钢板厚度的PBL剪力键力学性能研究[J]. 工程力学, 2012, 29(8):282-288. Xiao Lin, Qiang Shizhong, Li Xiaozhen, et al. Research on mechanical performance of PBL shear connectors considering the perforated plate's thickness[J] Engineering Mechanics, 2012, 29(8):282-288. (in Chinese)
[16] 汪维安, 李乔, 赵灿晖, 等. 混合结构PBL剪力键的荷载-滑移特征曲线研究[J]. 工程力学, 2015, 32(3):57-65. Wang Weian, Li Qiao, Zhao Canhui, et al. Study on load-slip characteristic curve of perfobond shear connectors in hybrid structures[J] Engineering Mechanics, 2015, 32(3):57-65. (in Chinese)
[17] Su Q, Yang G, Bradford M A. Bearing capacity of perfobond rib shear connectors in composite girder bridges[J]. Journal of Bridge Engineering, 2016, 21(4):6015001-6015009.
[18] Da C Vianna J, de Andrade S A L, Da S Vellasco P C G, et al. Experimental study of perfobond shear connectors in composite construction[J]. Journal of Constructional Steel Research, 2013, 81:62-75.
[19] Ahn J, Lee C, Won J, et al. Shear resistance of the perfobond-rib shear connector depending on concrete strength and rib arrangement[J]. Journal of Constructional Steel Research, 2010, 66(10):1295-1307.
[20] Candido-Martins J P S, Costa-Neves L F, Vellasco P C G D. Experimental evaluation of the structural response of Perfobond shear connectors[J]. Engineering Structures, 2010, 32(8):1976-1985.
[21] Xue W, Ding M, Wang H, et al. Static behavior and theoretical model of stud shear connectors[J]. Journal of Bridge Engineering, 2008, 13(6):623-634.
[22] Lee P G, Shim C S, Chang S P. Static and fatigue behavior of large stud shear connectors for steel-concrete composite bridges[J]. Journal of Constructional Steel Research, 2005, 61(9):1270-1285.
[23] 丁发兴, 倪鸣, 龚永智, 等. 栓钉剪力连接件滑移性能试验研究及受剪承载力计算[J]. 建筑结构学报, 2014, 35(9):98-106. Ding Faxing, Ni Ming, Gong Yongzhi, et al. Experimental study on slip behavior and calculation of shear bearing capacity for shear stud connectors[J]. Journal of Building Structures, 2014, 35(9):98-106. (in Chinese)
[1] 张微敬, 张晨骋. 钢筋套筒挤压连接的预制RC柱非线性有限元分析[J]. 工程力学, 2018, 35(S1): 67-72.
[2] 张陆陈, 王余杰, 骆少泽. 射流簇底流消能旋涡区脉动压力特性研究[J]. 工程力学, 2018, 35(S1): 355-358.
[3] 杨勇, 陈阳. PBL剪力连接件抗剪承载力试验研究[J]. 工程力学, 2018, 35(9): 89-96.
[4] 石吉森, 凌道盛, 徐泽龙, 黄博. 倾斜场地中逆断层错动对上覆土体影响的模型试验研究[J]. 工程力学, 2018, 35(7): 194-207.
[5] 范重, 刘云博, 王祥臻, 吴徽, 王义华. 连梁骨架曲线与滞回特性研究[J]. 工程力学, 2018, 35(6): 68-77,87.
[6] 李永乐, 王磊, 向活跃, 陈新中. 板桁梁抗扭惯性矩的计算方法[J]. 工程力学, 2018, 35(3): 125-131.
[7] 陈庆发, 赵富裕, 陈青林, 王玉丁. 基于室内模型试验的多漏斗同步放矿柔性隔离层材料受力特性分析[J]. 工程力学, 2018, 35(11): 240-248.
[8] 黄明, 付俊杰, 陈福全, 江松. 桩端岩溶顶板的破坏特征试验与理论计算模型研究[J]. 工程力学, 2018, 35(10): 172-182.
[9] 苏庆田, 林航, 杜霄, 曾明根. 波形钢腹板导梁局部承压的加强构造与试验[J]. 工程力学, 2017, 34(增刊): 78-83.
[10] 王俊杰, 王伟, 孙昕. 压型钢板组合梁中柱子结构的抗连续倒塌试验[J]. 工程力学, 2017, 34(增刊): 149-153,178.
[11] 董旭, 邓振全, 李树忱, 谷守法, 张峰. 大跨波形钢腹板箱梁桥日照温度场及温差效应研究[J]. 工程力学, 2017, 34(9): 230-238.
[12] 乔朋, 狄谨, 秦凤江. 单箱多室波形钢腹板组合箱梁的腹板剪应力分析[J]. 工程力学, 2017, 34(7): 97-107.
[13] 江学良, 牛家永, 连鹏远, 文畅平, 王飞飞. 含小净距隧道岩石边坡地震动力特性的大型振动台试验研究[J]. 工程力学, 2017, 34(5): 132-141,147.
[14] 赵兵, 陈务军, 胡建辉, 邱振宇, 赵俊钊 . 基于摄影测量的充气膜结构有限元建模方法[J]. 工程力学, 2017, 34(3): 141-148.
[15] 栾乐乐, 许斌, 陈洪兵. 界面剥离钢-混凝土组合结构应力波传播谱元法模拟研究[J]. 工程力学, 2017, 34(2): 145-152.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日