工程力学 ›› 2019, Vol. 36 ›› Issue (3): 79-94.doi: 10.6052/j.issn.1000-4750.2018.01.0073

• 土木工程学科 • 上一篇    下一篇

HRB500/HRB600钢筋作纵筋的混凝土连续梁弯矩调幅试验研究

郑文忠, 李玲, 王英   

  1. 哈尔滨工业大学结构工程灾变与控制教育部重点实验室, 哈尔滨 150090
  • 收稿日期:2018-01-25 修回日期:2018-07-02 出版日期:2019-03-29 发布日期:2019-03-16
  • 通讯作者: 郑文忠(1965-),男,天津蓟县人,长江学者特聘教授,工学博士,博导,主要从事混凝土结构研究(E-mail:hitwzzheng@163.com). E-mail:hitwzzheng@163.com
  • 作者简介:李玲(1990-),女,黑龙江双鸭山人,博士生,主要从事混凝土结构研究(E-mail:liling0048hit@163.com);王英(1968-),女,四川万县人,副教授,工学博士,主要从事混凝土结构研究(E-mail:wangying888@hit.edu.cn)
  • 基金资助:
    教育部博士点基金资助项目(20132302110064),国家自然科学基金项目(51678190,51378146)

EXPERIMENTAL STUDY ON MOMENT REDISTRIBUTION IN REINFORCED CONCRETE CONTINUOUS BEAMS WITH HRB500/HRB600 STEEL BARS

ZHENG Wen-zhong, LI Ling, WANG Ying   

  1. Key Laboratory of Disaster and Control in Structural Engineering of China Ministry of Education, Harbin Institute of Technology, Harbin 150090, China
  • Received:2018-01-25 Revised:2018-07-02 Online:2019-03-29 Published:2019-03-16

摘要: HRB500钢筋、HRB600钢筋已分别纳入《钢筋混凝土结构设计规范》(GB 50010-2010)和《钢筋混凝土用钢第2部分:热轧带肋钢筋》(GB/T 1499.2-2018)。为考察HRB500钢筋、HRB600钢筋作纵筋的混凝土连续梁弯矩调幅性能,完成了24根两跨连续梁试验。试验结果表明,由于HRB500和HRB600钢筋的屈服强度明显高于HPB235和HRB335钢筋,试验梁中支座控制截面的弯矩调幅不只发生在塑性铰形成之后,在受拉区混凝土进入塑性、经历开裂和裂缝发展直至中支座控制截面受拉纵筋屈服这一较长的塑性发展过程中也存在一定的弯矩调幅。分塑性铰形成前后两阶段对试验梁中支座控制截面弯矩调幅进行考察,第一阶段弯矩调幅幅度βI介于15.28%~24.21%,第二阶段弯矩调幅幅度β介于6.91%~30.30%。发现随着受拉纵筋屈服强度的提高,βI增大、β减小;随着相对受压区高度的增大,βIβ均减小;随着中支座宽度的增大,βIβ均增大。基于试验数据建立考虑各关键参数影响的两阶段弯矩调幅系数计算公式。

关键词: HRB500/HRB600钢筋, 混凝土连续梁, 中支座宽度, 塑性铰, 弯矩调幅

Abstract: HRB500 and HRB600 steel bars have been adopted by ‘Code for design of concrete structures’ (GB 50010-2010) and ‘Steel for the reinforcement of concrete-Part 2: Hot rolled ribbed bars’ (GB/T 1499.2-2018). In order to investigate the moment redistribution in continuous reinforced concrete beams with HRB500 and HRB600 steel bars as tensile longitudinal bars, 24 two-span continuous beams were tested in this study. The test results showed that the moment redistribution occurred not only after the formation of plastic hinge but in the process from plastic development of the tensile concrete to the formation of the plastic hinge. The moment redistribution was investigated in two stages, namely, before and after the appearance of the plastic hinge. The first-stage moment redistribution (βI) was between 15.28%~24.21% and the second-stage moment redistribution (β) was between 6.91%~30.3%. It was found that the increase in the yield strength of tensile longitudinal steel bars led to an increase in βI but a decrease in β. Moreover,βI and β increased with the increase in the width of the mid-support and the decrease in the relative depth of the compressive zone. Formulas for the moment redistribution of two stages considering the effects of the key factors were proposed based on the test results.

Key words: HRB500/HRB600 steel bars, concrete continuous beams, width of intermediate support, plastic hinge, moment redistribution

中图分类号: 

  • TU375.1
[1] GB 50010-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50010-2010, Code for design of concrete structures[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[2] GB/T 1499.2-2018, 钢筋混凝土用钢第2部分:热轧带肋钢筋[S]. 北京:中国标准出版社, 2018. GB/T 1499.2-2018, Steel for the reinforcement of concrete-Part 2:Hot rolled ribbed bars[S]. Beijing:Standards Press of China, 2018. (in Chinese)
[3] CECS 51-93, 钢筋混凝土连续梁和框架考虑内力重分布设计[S]. 北京:中国计划出版社, 1992 CECS 51-93, Specification for design of reinforced concrete continuous beams and frames considering redistribution of internal forces[S]. Beijing:China Plan Publishing Company, 1992. (in Chinese)
[4] EN1992-1-1:2011, Design of concrete structures[S]. European Committee of Standardization, 2011.
[5] AS 3600-2009, Concrete structures[S]. Sydney:Standards Australia BD-002, 2009.
[6] DIN 1045-3:2001, Concrete reinforced and prestressed concrete structures[S]. Berlin, 2001.
[7] FIB Bulletin 65:model code 2010, final draft-Volume 2[S]. Germany:Document Competence Center Siegar Kastle e. K, 2012.
[8] ACI 318-14, Building code requirements for structural concrete and commentary[S]. ACI Committee, American Concrete Institute, International Organization for Standardization, 2014.
[9] Mostofinejad D, Farahbod F. Parametric study on moment redistribution in continuous RC beams using ductility demand and ductility capacity concept[J]. Iranian Journal of Science and Technology, 2007, 31(B5):459.
[10] 常莹莹, 贡金鑫. 钢筋混凝土受弯构件的延性及弯矩重分布[J]. 建筑科学与工程学报, 2010, 27(2):38-44. Chang Yingying, Gong Jinxin. Ductility and moment redistribution of reinforced concrete flexural members[J]. Journal of Architecture and Civil Engineering, 2010, 27(2):38-44. (in Chinese)
[11] 郑文忠, 李和平, 王英. 超静定预应力混凝土结构塑性设计[M]. 哈尔滨:哈尔滨工业大学出版社, 2002:78-104. Zheng Wenzhong, Li Heping, Wang Ying. Plastic design of statically indeterminate prestressed concrete structure[M]. Harbin:Harbin Institute of Technology Press, 2002:78-104. (in Chinese)
[12] Zheng Wenzhong, Zhou Wei. Experimental research on plastic design method and moment redistribution in continuous concrete beams prestressed with unbonded tendons[J]. Magazine of Concrete Research, 2010, 62(1):51-64.
[13] Scott R H, Whittle R T. Moment redistribution effects in beams[J]. Magazine of Concrete Research, 2005, 57(1):9-20.
[14] Oehlers D J, Haskett M, Ali M S M, et al. Moment redistribution in reinforced concrete beams[J]. Proceedings of the ICE-Structures and Buildings, 2010, 163(3):165-176.
[15] 王英, 周威, 郑文忠. 跨中集中荷载下两跨UPC矩形截面连续梁塑性铰性能[J]. 土木工程学报, 2008, 41(5):26-32. Wang Ying, Zhou Wei, Zheng Wenzhong. Performance of plastic hinge in a two-span continuous rectangular cross-section beam prestressed with unbonded tendons under concentrated load at mid span[J]. China Civil Engineering Journal, 2008, 41(5):26-32. (in Chinese)
[16] 郑文忠, 王钧, 韩宝权, 等. 内置H型钢预应力混凝土连续组合梁受力性能试验研究[J]. 建筑结构学报, 2010, 31(7):23-31. Zheng Wenzhong, Wang Jun, Han Baoquan, et al. Experimental research on mechanical behavior of continuous prestressed composite concrete beams with encased H-steel[J]. Journal of Building Structures, 2010, 31(7):23-31. (in Chinese)
[17] 李莉, 郑文忠. 活性粉末混凝土连续梁塑性性能试验[J]. 哈尔滨工业大学学报, 2010, 42(2):193-199. Li Li, Zheng Wenzhong. Experimental study on plastic property of reactive powder concrete continuous beams[J]. Journal of Harbin Institute of Technology, 2010, 42(2):193-199. (in Chinese)
[18] 解恒燕, 郑文忠. 内置钢箱-混凝土连续组合梁受力性能试验[J]. 哈尔滨工业大学学报, 2010, 42(2):186-192. Xie Hengyan, Zheng Wenzhong. Experimental research on mechanical behavior of continuous encased steel box concrete beam[J]. Journal of Harbin Institute of Technology, 2010, 42(2):186-192. (in Chinese)
[19] Ko M Y, Kim S W, Kim J K. Experimental study on the plastic rotation capacity of reinforced high strength concrete beams[J]. Materials and Structures, 2001, 34(5):302-311.
[20] Bagge N, O'Connor A, Elfgren L, et al. Moment redistribution in RC beams-A study of the influence of longitudinal and transverse reinforcement ratios and concrete strength[J]. Engineering Structures, 2014, 80(5):11-23.
[21] Cohn M Z, Riva P. Flexural ductility of structural concrete sections[J]. PCI Journal, 1991, 36(2):361-369.
[22] Kheyroddin A, Naderpour H. Plastic hinge rotation capacity of reinforced concrete beams[J]. International Journal of Civil Engineering, 2007, 5(1):30-47.
[23] Haskett M, Oehlers D J, Ali M S M, et al. Rigid body moment-rotation mechanism for reinforced concrete beam hinges[J]. Engineering Structures, 2009, 31(5):1032-1041.
[24] 李龙起, 周东华, 廖文远, 等. 腹板开洞钢-混凝土连续组合梁塑性铰及内力重分布试验研究[J]. 工程力学, 2015, 32(11):123-131. Li Longqi, Zhou Donghua, Liao Wenyuan, et al. Experimental study on plastic hinge and international force redistribution for continuous steel-concrete composite beams with web openings[J]. Engineering Mechanics, 2015, 32(11):123-131. (in Chinese)
[25] 杜进生, 赵益鹏. 体外预应力混凝土连续梁的弯矩重分布试验研究[J]. 工程力学, 2013, 30(3):263-269. Du Jinsheng, Zhang Yipeng. Experimental study of moment redistribution in externally prestressed concrete continuous beams[J]. Engineering Mechanics, 2013, 30(3):263-269. (in Chinese)
[26] Lou T, Liu M, Lopes S M R, et al. Moment redistribution in two-span prestressed NSC and HSC beams[J]. Materials & Structures, 2017, 50(6):246.
[27] Visintin P, Ali M S M, et al. Experimental investigation of moment redistribution in ultra-high performance fibre reinforced concrete beams[J]. Construction & Building Materials, 2018, 166(March):433-444.
[1] 朱崇绩, 董毓利. 火灾下邻边简支邻边固支双向板极限承载力的能量计算法[J]. 工程力学, 2018, 35(8): 67-78,99.
[2] 张超, 薛素铎, 王广勇, 张东明. 火灾后型钢混凝土框架结构力学性能试验研究及分析[J]. 工程力学, 2018, 35(5): 152-161.
[3] 田建勃, 史庆轩, 刘云贺, 李慎, 马辉. PRC连梁-混合联肢剪力墙抗震性能分析[J]. 工程力学, 2018, 35(11): 53-67.
[4] 王玉梅, 王仁杰, 王涛. 设防框架的梁铰模型和能力易损性的试验研究[J]. 工程力学, 2017, 34(10): 168-177.
[5] 谢文, 孙利民. 带剪切连梁的双柱式桥墩抗震性能分析方法与试验验证[J]. 工程力学, 2016, 33(7): 176-183.
[6] 陈宇, 李忠献, 李宁. 钢筋混凝土柱地震破坏分析的多尺度建模方法[J]. 工程力学, 2016, 33(6): 46-53.
[7] 王萌,石永久,王元清. 17层钢框架在北岭地震下的破坏预测[J]. 工程力学, 2015, 32(3): 50-56.
[8] 李龙起, 周东华, 廖文远, 姚凯程. 腹板开洞钢-混凝土连续组合梁塑性铰及内力重分布试验研究[J]. 工程力学, 2015, 32(11): 123-131.
[9] 王广勇, 史毅, 张东明, 郑蝉蝉. 火灾后型钢混凝土柱抗震性能试验研究[J]. 工程力学, 2015, 32(11): 160-169.
[10] 岳庆霞, 叶列平, 陆新征. 土结相互作用对框架结构倒塌的影响研究[J]. 工程力学, 2014, 31(3): 87-92.
[11] 胡淑军, 王湛, 潘建荣. 基于截面组合法和截面弹簧刚度考虑跨内塑性铰的钢框架高等分析[J]. 工程力学, 2014, 31(2): 203-209.
[12] 杜进生,赵益鹏. 体外预应力混凝土连续梁的弯矩重分布试验研究[J]. 工程力学, 2013, 30(3): 263-269.
[13] 杨新磊,薛伟辰. 现浇柱预制梁框架单调静力性能试验与内力计算方法研究[J]. 工程力学, 2013, 30(10): 100-107.
[14] 顾冬生,吴 刚. 地震荷载作用下FRP加固钢筋混凝土圆柱变形能力计算方法研究[J]. 工程力学, 2013, 30(1): 261-270.
[15] 王文杰, 邵永波, 夏辉. 环口板加固T型方钢管节点在轴压作用下极限承载力研究[J]. 工程力学, 2012, 29(6): 138-145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日